Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Ling Shao, Yan Hu, Xin Zhou, Qing Zhang and Jian-Xin Fang*

State Key Laboratory and Institute of ElementoOrganic Chemistry, Nankai University, Tianjin 300071, Peoples' Republic of China

Correspondence e-mail:
shaoling1999@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.031$
$w R$ factor $=0.092$
Data-to-parameter ratio $=14.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Amino-4-(ferrocenyl)-5-(1H-1,2,4-triazol-1-yl)-1,3-thiazole

In the title compound, $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{5} \mathrm{~S}\right)\right]$, the $\mathrm{Fe}-\mathrm{C}$ bond lengths are in the range 2.015 (4)-2.048 (3) \AA. The thiazole and triazole rings make dihedral angles of 84.2 (1) and $10.7(2)^{\circ}$, respectively, with the substituted cyclopentadienyl ring $\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$. The crystal packing is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds involving the amino H atoms.

Comment

Ferrocene-containing organic compounds often exhibit biological activity (Biot et al., 2000; Fang et al., 2003a,b). Thiazoles and their derivatives are found to be associated with various biological activities, such as antibacterial, antifungal and anti-inflammatory activities (Gusmeroli et al., 2003; Wilson et al., 2001). Triazole antifungals are known as potent inhibitors of cytochrome P450 monooxygenase in the process of fungal biosynthesis of ergosterol, which is an important constituent of fungal cell membranes (Hiroshi et al., 1995). In our search for novel aminothiazole compounds with potent fungicidal activities, we intend to synthesize 2-aminothiazole compounds incorporating ferrocene and $1 H-1,2,4$-triazole units. We have investigated the crystal structure of the title compound, (I) (Fig. 1), and present the results here.

(I)

In the molecule of (I), the $\mathrm{Fe}-\mathrm{C}$ bond lengths are in the range 2.015 (4)-2.048 (3) \AA (Table 1). The Fe1 $\cdots C g 1$ and $\mathrm{Fe} 1 \cdots \mathrm{Cg} 2$ distances are 1.650 (2) and 1.640 (2) \AA, respectively, and the $C g 1 \cdots \mathrm{Fe} 1 \cdots C g 2$ angle is $179.4(2)^{\circ}$, where $C g 1$ and Cg 2 are the centroids of the $\mathrm{C}_{5} \mathrm{H}_{5}$ and $\mathrm{C}_{5} \mathrm{H}_{4}$ rings, respectively. The cyclopentadienyl rings are not in the eclipsed geometry, as evidenced by the $\mathrm{C} 1-\mathrm{Cg} 1-\mathrm{Cg} 2-\mathrm{C} 6$ and $\mathrm{C} 3-$ $C g 1-C g 2-\mathrm{C} 8$ torsion angles of $39.7(2)^{\circ}$ and $32.5(2)^{\circ}$, respectively. The $\mathrm{C}-\mathrm{C}$ bond lengths in both cyclopentadienyl rings are normal (Anderson et al., 2003).

The thiazole ($\mathrm{C} 11 / \mathrm{C} 12 / \mathrm{S} 1 / \mathrm{C} 15 / \mathrm{N} 4$) and triazole ($\mathrm{N} 1 / \mathrm{N} 2 /$ $\mathrm{C} 14 / \mathrm{N} 3 / \mathrm{C} 13)$ rings make dihedral angles of 84.2 (1) and $10.7(2)^{\circ}$, respectively, with the substituted cyclopentadienyl ring ($\mathrm{C} 6-\mathrm{C} 10$).

The crystal packing of (I) (Fig. 2) is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 2) involving the amino H atoms.

Received 11 May 2005 Accepted 31 May 2005 Online 10 June 2005

Figure 1
A view of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids.

Experimental

Preparation of the title compound was based on a Hantzsch reaction (Hantzsch \& Weber, 1887). 2-Bromo-2-1H-1,2,4-triazole-1-acetylferrocene (1 mmol) and thiourea (2 mmol) were dissolved in warm ethanol $(100 \mathrm{ml})$. The mixture was refluxed for 10 h and ammonia solution $(5 \%, 20 \mathrm{ml})$ was then added. The red crystals that formed were filtered and dried. After recrystallization from methanol, the title compound was obtained. Analysis, calculated for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FeN}_{5} \mathrm{~S}$: C 51.30, H 3.73, N 19.94\%; found: C 51.35, H 3.61, N 19.72\%. Yield 46%.

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{5} \mathrm{~S}\right)\right]$
$M_{r}=351.21$
Monoclinic, $P 2_{1} / n$
$a=7.507$ (5) \AA 。
$b=20.018$ (14) \AA
$c=9.600$ (7) A
$\beta=103.330(11)^{\circ}$ 。
$V=1403.8(17) \AA^{3}$
$Z=4$

```
\(D_{x}=1.662 \mathrm{Mg} \mathrm{m}^{-3}\)
Mo \(K \alpha\) radiation
Cell parameters from 3711
        reflections
\(\theta=2.4-26.4^{\circ}\)
\(\mu=1.23 \mathrm{~mm}^{-1}\)
\(T=293\) (2) K
```

Block, red
$0.22 \times 0.16 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.759, T_{\text {max }}=0.885$
7935 measured reflections

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.092$
$S=1.09$
2885 reflections
199 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 2
A packing diagram for (I), viewed down the c axis Dashed lines indicate the hydrogen bonds.

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Fe} 1-\mathrm{C} 2$	$2.015(4)$	$\mathrm{S} 1-\mathrm{C} 15$	$1.736(3)$
$\mathrm{Fe} 1-\mathrm{C} 1$	$2.018(4)$	$\mathrm{S} 1-\mathrm{C} 12$	$1.737(3)$
$\mathrm{Fe} 1-\mathrm{C} 6$	$2.022(3)$	$\mathrm{N} 1-\mathrm{C} 13$	$1.336(4)$
$\mathrm{Fe} 1-\mathrm{C} 3$	$2.028(3)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.364(3)$
$\mathrm{Fe} 1-\mathrm{C} 9$	$2.029(3)$	$\mathrm{N} 1-\mathrm{C} 12$	$1.410(3)$
$\mathrm{Fe} 1-\mathrm{C} 10$	$2.029(3)$	$\mathrm{N} 4-\mathrm{C} 15$	$1.308(3)$
$\mathrm{Fe} 1-\mathrm{C} 5$	$2.040(3)$	$\mathrm{N} 4-\mathrm{C} 11$	$1.385(3)$
$\mathrm{Fe} 1-\mathrm{C} 4$	$2.042(3)$	$\mathrm{N} 5-\mathrm{C} 15$	$1.341(3)$
$\mathrm{Fe} 1-\mathrm{C} 7$	$2.043(3)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.458(4)$
$\mathrm{Fe} 1-\mathrm{C} 8$	$2.048(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.350(4)$
$\mathrm{C} 15-\mathrm{S} 1-\mathrm{C} 12$	$87.67(12)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 10$	$126.2(2)$
$\mathrm{C} 13-\mathrm{N} 1-\mathrm{N} 2$	$109.4(2)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{N} 1$	$126.6(2)$
$\mathrm{C} 13-\mathrm{N} 1-\mathrm{C} 12$	$129.2(2)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{S} 1$	$111.73(19)$
$\mathrm{C} 14-\mathrm{N} 2-\mathrm{N} 1$	$101.6(3)$	$\mathrm{N} 3-\mathrm{C} 13-\mathrm{N} 1$	$110.3(3)$
$\mathrm{C} 13-\mathrm{N} 3-\mathrm{C} 14$	$102.7(3)$	$\mathrm{N} 3-\mathrm{C} 13-\mathrm{H} 13$	124.9
$\mathrm{C} 15-\mathrm{N} 4-\mathrm{C} 11$	$110.9(2)$	$\mathrm{N} 3-\mathrm{C} 14-\mathrm{H} 14$	122.0
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5$	$108.5(4)$	$\mathrm{N} 4-\mathrm{C} 15-\mathrm{S} 1$	$115.45(19)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{N} 4$	$114.2(2)$		
$\mathrm{C} 12-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 14$	$-175.4(2)$	$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 12-\mathrm{S} 1$	$-94.5(3)$
$\mathrm{C} 6-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$11.2(4)$	$\mathrm{C} 15-\mathrm{S} 1-\mathrm{C} 12-\mathrm{C} 11$	$1.2(2)$
$\mathrm{C} 6-\mathrm{C} 10-\mathrm{C} 11-\mathrm{N} 4$	$-173.2(3)$	$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 14-\mathrm{N} 3$	$0.3(3)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 11$	$77.0(3)$	$\mathrm{C} 12-\mathrm{S} 1-\mathrm{C} 15-\mathrm{N} 5$	$178.7(2)$

Table 2
Hydrogen-bond geometry (\AA, ${ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 5-\mathrm{H} 5 A \cdots \mathrm{~N} 4^{\text {i }}$	0.93	2.08	3.016 (4)	176
$\mathrm{N} 5-\mathrm{H} 5 B \cdots \mathrm{~N} 3{ }^{\text {ii }}$	0.92	2.27	3.136 (4)	157

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $x+\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$.
The amino H atoms were located in a difference Fourier map and refined isotropically, with the distance restraint $\mathrm{N}-\mathrm{H}=0.92$ (1) \AA. The C-bound H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ $=0.93 \AA$, and included in the final cycles of refinement using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve

metal-organic papers

structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (grant Nos. 29872022 and 20172030) and the Research Fund for the Doctoral Programme of Higher Education (grant No. 9805520).

References

Anderson, F. P., Gallagher, J. F., Kenny, P. T. M., Ryan, C. \& Savage, D. (2003). Acta Cryst. C59, m13-m15

Biot, C., Delhaes, L., Maciejewski, L. A., Mortuaire, M., Camus, D., Divid, S. \& Brocard, S. S. (2000). Eur. J. Med. Chem. 35, 707-714
Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Fang, J., Jin, Z., Li, Z. \& Liu, W. (2003a). J. Organomet. Chem. 674, 1-9.
Fang, J., Jin, Z., Li, Z. \& Liu, W. (2003b). Appl. Organomet. Chem. 17, 145-153.
Gusmeroli, M., Ciapessoni A., Bettarini, F., Osi, S., Mirenna, L., Camaggi, G. \& Elmini, A. (2003). WO Patent No. 03050096.
Hantzsch, A. \& Weber, J. H. (1887). Ber. Dtsch. Chem. Ges. 20, 3118-3132.
Hiroshi M., Koichi K., Tomoharu T. \& Naohito O. (1995). Bioorg. Med. Chem. Lett. 5, 1479-1482.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wilson, K. J., Utig, N., Subhasinghe, N., Hoffman, J. B., Rudolph, N. J., Soll, R., Molloy, C. J., Bone, R., Green, D. \& Randall, J. (2001). Bioorg. Med. Chem. Lett. 11, 915-918.

